3.3.9 \(\int \frac {(a+a \sec (c+d x)) (A+C \sec ^2(c+d x))}{\sqrt {\sec (c+d x)}} \, dx\) [209]

3.3.9.1 Optimal result
3.3.9.2 Mathematica [C] (verified)
3.3.9.3 Rubi [A] (verified)
3.3.9.4 Maple [B] (verified)
3.3.9.5 Fricas [C] (verification not implemented)
3.3.9.6 Sympy [F]
3.3.9.7 Maxima [F]
3.3.9.8 Giac [F]
3.3.9.9 Mupad [F(-1)]

3.3.9.1 Optimal result

Integrand size = 33, antiderivative size = 135 \[ \int \frac {(a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\frac {2 a (A-C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 a (3 A+C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a C \sqrt {\sec (c+d x)} \sin (c+d x)}{d}+\frac {2 a C \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d} \]

output
2/3*a*C*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2*a*C*sin(d*x+c)*sec(d*x+c)^(1/2)/d+ 
2*a*(A-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/ 
2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2/3*a*(3*A+C)*(c 
os(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c) 
,2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d
 
3.3.9.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.82 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.24 \[ \int \frac {(a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\frac {a e^{-i d x} \sec ^{\frac {3}{2}}(c+d x) (-i \cos (d x)+\sin (d x)) \left (-3 A+3 C-3 A \cos (2 (c+d x))+3 C \cos (2 (c+d x))+2 i (3 A+C) \cos ^{\frac {3}{2}}(c+d x) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+(A-C) \left (1+e^{2 i (c+d x)}\right )^{3/2} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+2 i C \sin (c+d x)+3 i C \sin (2 (c+d x))\right )}{3 d} \]

input
Integrate[((a + a*Sec[c + d*x])*(A + C*Sec[c + d*x]^2))/Sqrt[Sec[c + d*x]] 
,x]
 
output
(a*Sec[c + d*x]^(3/2)*((-I)*Cos[d*x] + Sin[d*x])*(-3*A + 3*C - 3*A*Cos[2*( 
c + d*x)] + 3*C*Cos[2*(c + d*x)] + (2*I)*(3*A + C)*Cos[c + d*x]^(3/2)*Elli 
pticF[(c + d*x)/2, 2] + (A - C)*(1 + E^((2*I)*(c + d*x)))^(3/2)*Hypergeome 
tric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] + (2*I)*C*Sin[c + d*x] + (3*I 
)*C*Sin[2*(c + d*x)]))/(3*d*E^(I*d*x))
 
3.3.9.3 Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.02, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.424, Rules used = {3042, 4565, 27, 3042, 4535, 3042, 4258, 3042, 3120, 4534, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4565

\(\displaystyle \frac {2}{3} \int \frac {3 a C \sec ^2(c+d x)+a (3 A+C) \sec (c+d x)+3 a A}{2 \sqrt {\sec (c+d x)}}dx+\frac {2 a C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {3 a C \sec ^2(c+d x)+a (3 A+C) \sec (c+d x)+3 a A}{\sqrt {\sec (c+d x)}}dx+\frac {2 a C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {3 a C \csc \left (c+d x+\frac {\pi }{2}\right )^2+a (3 A+C) \csc \left (c+d x+\frac {\pi }{2}\right )+3 a A}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 4535

\(\displaystyle \frac {1}{3} \left (\int \frac {3 a C \sec ^2(c+d x)+3 a A}{\sqrt {\sec (c+d x)}}dx+a (3 A+C) \int \sqrt {\sec (c+d x)}dx\right )+\frac {2 a C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (a (3 A+C) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\int \frac {3 a C \csc \left (c+d x+\frac {\pi }{2}\right )^2+3 a A}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{3} \left (\int \frac {3 a C \csc \left (c+d x+\frac {\pi }{2}\right )^2+3 a A}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+a (3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx\right )+\frac {2 a C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\int \frac {3 a C \csc \left (c+d x+\frac {\pi }{2}\right )^2+3 a A}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+a (3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{3} \left (\int \frac {3 a C \csc \left (c+d x+\frac {\pi }{2}\right )^2+3 a A}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a (3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}\right )+\frac {2 a C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 4534

\(\displaystyle \frac {1}{3} \left (3 a (A-C) \int \frac {1}{\sqrt {\sec (c+d x)}}dx+\frac {2 a (3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a C \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (3 a (A-C) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a (3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a C \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{3} \left (3 a (A-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx+\frac {2 a (3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a C \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (3 a (A-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 a (3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a C \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{3} \left (\frac {2 a (3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a (A-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {6 a C \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\)

input
Int[((a + a*Sec[c + d*x])*(A + C*Sec[c + d*x]^2))/Sqrt[Sec[c + d*x]],x]
 
output
(2*a*C*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d) + ((6*a*(A - C)*Sqrt[Cos[c + 
 d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a*(3*A + C)*Sq 
rt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (6*a*C* 
Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d)/3
 

3.3.9.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4534
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1) 
)), x] + Simp[(C*m + A*(m + 1))/(m + 1)   Int[(b*Csc[e + f*x])^m, x], x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]
 

rule 4535
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]* 
(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.)), x_Symbol] :> Simp[B/b   Int[(b*Cs 
c[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x]^2) 
, x] /; FreeQ[{b, e, f, A, B, C, m}, x]
 

rule 4565
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(-b)*C*C 
sc[e + f*x]*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(n + 2))), x] + Simp[1/(n + 
 2)   Int[(d*Csc[e + f*x])^n*Simp[A*a*(n + 2) + b*(C*(n + 1) + A*(n + 2))*C 
sc[e + f*x] + a*C*(n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, 
f, A, C, n}, x] &&  !LtQ[n, -1]
 
3.3.9.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(409\) vs. \(2(171)=342\).

Time = 2.35 (sec) , antiderivative size = 410, normalized size of antiderivative = 3.04

method result size
default \(-\frac {a \sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {2 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {2 C \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}+2 C \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(410\)
parts \(-\frac {2 a A \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 C a \left (-2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 C a \left (-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) d}+\frac {2 a A \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(667\)

input
int((a+a*sec(d*x+c))*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2),x,method=_RETURNV 
ERBOSE)
 
output
-a*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2 
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-E 
llipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+2*C/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2* 
d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*co 
s(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-(sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellipti 
cE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2))+2*C*(-1/6 
*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/( 
cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d 
*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)* 
EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+ 
1/2*c)^2-1)^(1/2)/d
 
3.3.9.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.41 \[ \int \frac {(a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\frac {-i \, \sqrt {2} {\left (3 \, A + C\right )} a \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} {\left (3 \, A + C\right )} a \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} {\left (A - C\right )} a \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} {\left (A - C\right )} a \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (3 \, C a \cos \left (d x + c\right ) + C a\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{3 \, d \cos \left (d x + c\right )} \]

input
integrate((a+a*sec(d*x+c))*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2),x, algorith 
m="fricas")
 
output
1/3*(-I*sqrt(2)*(3*A + C)*a*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d* 
x + c) + I*sin(d*x + c)) + I*sqrt(2)*(3*A + C)*a*cos(d*x + c)*weierstrassP 
Inverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*I*sqrt(2)*(A - C)*a*cos( 
d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + 
I*sin(d*x + c))) - 3*I*sqrt(2)*(A - C)*a*cos(d*x + c)*weierstrassZeta(-4, 
0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(3*C*a*c 
os(d*x + c) + C*a)*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c))
 
3.3.9.6 Sympy [F]

\[ \int \frac {(a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=a \left (\int \frac {A}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int A \sqrt {\sec {\left (c + d x \right )}}\, dx + \int C \sec ^{\frac {3}{2}}{\left (c + d x \right )}\, dx + \int C \sec ^{\frac {5}{2}}{\left (c + d x \right )}\, dx\right ) \]

input
integrate((a+a*sec(d*x+c))*(A+C*sec(d*x+c)**2)/sec(d*x+c)**(1/2),x)
 
output
a*(Integral(A/sqrt(sec(c + d*x)), x) + Integral(A*sqrt(sec(c + d*x)), x) + 
 Integral(C*sec(c + d*x)**(3/2), x) + Integral(C*sec(c + d*x)**(5/2), x))
 
3.3.9.7 Maxima [F]

\[ \int \frac {(a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate((a+a*sec(d*x+c))*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2),x, algorith 
m="maxima")
 
output
integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)/sqrt(sec(d*x + c)), 
x)
 
3.3.9.8 Giac [F]

\[ \int \frac {(a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate((a+a*sec(d*x+c))*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2),x, algorith 
m="giac")
 
output
integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)/sqrt(sec(d*x + c)), 
x)
 
3.3.9.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x)) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

input
int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x)))/(1/cos(c + d*x))^(1/2),x 
)
 
output
int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x)))/(1/cos(c + d*x))^(1/2), 
x)